アンディマンのテクノロジー(援技力)

写真表現に関わる専門的な知識を補うために設けたブログです。 新たらしい時代に相応しい技術情報を掲載していきます。 普段疑問に思った問題の解決に繋げるテーマを醸成していきます。

2019年10月

光と色の基礎知識 No.8

1.2.6 黒体放射

 黒体Black body、あるいは完全放射体)とは、外部から入射する熱放射など(電磁波による)を、あらゆる波長に渡って完全に吸収し、また放出できる物体のことである。完全な意味での黒体(完全黒体)は、現実には存在しないといわれているが、ブラックホールなど近似的にそうみなせる物質、物体は存在している。

黒体からの熱などの放射を黒体放射という(以前は黒体輻射ともいった)。ある温度の黒体から放射される電磁波のスペクトルは一定である。温度 T において、波長 λ の電磁波の黒体放射強度 B(λ)

Fig1_1_2_16_0



で表される。これをプランク分布という。プランク分布を全波長領域で積分することで、黒体放射の全エネルギーが T4 に比例する(E =σT4σシュテファン=ボルツマン定数)というシュテファン=ボルツマンの法則を得る。また、微分して B(λ) が極大となる λ を求めることで、放射強度最大の波長が T  反比例するというヴィーンの変位則を得る。

Fig1_1_2_16
・空洞放射

十分に大きな空洞を考え、空洞を囲む壁は光を含む一切の電磁波を遮断するものとする。この空洞に、その大きさに対し十分に小さな孔を開ける。孔を開けることによる空洞内部の状態の変化は無視できるものとする。外部からその孔を通して入った電磁波(ある特定の波長のものが光)が、空洞内部で反射するなどして再び出てくることは、孔が十分に小さければ無視することができる。つまり、この空洞は、外部から入射する電磁波を(ほぼ)完全に吸収する黒体とみなすことができる。

この空洞からの熱などの放射を空洞放射という。

・黒体放射と量子力学

理想的な黒体放射を現実にもっとも再現するとされる空洞放射が温度のみに依存する、という法則はグスターブ・キルヒホッフにより1859年に発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。

物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある プランクの法則)。つまり、振動子が持ちうるエネルギー (E) は振動数 (ν) の整数倍に比例しなければならない。

E = nhν (n = 0, 1, 2, ...)

この比例定数 h = 6.626×10-34 [Js] は後に、プランク定数とよばれ物理学の基本定数となった。これは古典力学と反する仮定であった(古典力学では物理量は連続な値をとり、量子化されない)が、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と、光子の概念を用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。

・灰色体

工業製品などでの設計では、対象の温度範囲が限られていることから、しばしば放射率が周波数に依存しない理想的な物体として灰色体を用いている。この灰色体は、黒体の放射率を 1 より小さい定数としたものと等価であり、黒体よりも現実的なモデルを与える。

・黒体放射の原理

物体が低い温度の場合でも周りからの光を反射してしまうと、それは「物体から光が放射されている」状態と同じことなので、プランクの法則で説明される物体の温度と発光色の関係は崩れてしまう。また、一般的な物質は高温になったとしても全ての波長の光を出すことはできない。発光色をプリズムなどで分光すると、どこかの振動数に対応する光が欠けていたりする。そんなわけで、プランクの法則で説明される物体は 「全ての光を反射せずに吸収し、かつ、高温では全ての波長の光を欠けること無く出せる」という、理想化した物体ということになる。ただ、反射光の分を差し引いてやれば物体の温度と放射の関係はおおよそプランクの法則に従うので、そこそこ実用的な法則であるといえる。

 

Fig1_1_2_17

光と色の基礎知識 No.7

1.2.5 電磁誘導

 電磁誘導とは、磁束が変動する環境下に存在する導体電位差電圧)が生じる現象である。また、このとき発生した電流を誘導電流という。

一般にはマイケル・ファラデーによって1831に誘導現象が発見されたとされるが、先にジョセフ・ヘンリーに発見されている。また、フランセスコ・ツァンテデシFrancesco Zantedeschi)が1829に行った研究によって既に予想されていたともいわれている。

ファラデーは、閉じた経路に発生する起電力が、その経路によって囲われた任意の面を通過する磁束の変化率に比例することを発見した。すなわちこれは、導体によって囲われた面を通過する磁束が変化した時、すべての閉回路には電流が流れることを意味する。これは、磁束の強さそれ自体が変化した場合であっても、導体が移動した場合であっても適用される。

電磁誘導は、発電機誘導電動機変圧器など、多くの電気機器の動作原理となっている。

・電磁誘導における起電力

ファラデーの電磁誘導の法則は、次のように示される。

Fig1_1_2_15a



ここで、 ε は、起電力 (V)

ΦB は、磁束 (Wb) とする。

同じ領域に N 回巻かれたコイルが置かれた場合、ファラデーの電磁誘導の法則は、次のようになる。

Fig1_1_2_15b


ここで、 N は、電線の巻数とする。

起電力は磁束の方向に向かって左回りに発生するが、物理学の慣習では、いわゆる右ねじ関係が正であるとされるため、(これは物理に限った話ではなく数学でも例えばクロス積などが同様に定められている。) 左ねじ関係であるファラデーの電磁誘導の式には負号がつく。 逆に言えば、慣習に逆らって左ねじ関係を正と定めれば、負号はつかない。よって、ファラデーの電磁誘導の式は起電力の大きさだけでなく、向きも示している。

また、起電力の向きだけ(大きさは含まない)を示した法則として、レンツの法則、つまり、「回路に発生する起電力は、起電力によって回路を流れる電流が起こす磁束が、与えられた磁束変化に逆らうような方向で発生する。」が存在する。

Fig1_1_2_15

ギャラリー
  • 光と色の基礎知識 No.8
  • 光と色の基礎知識 No.8
  • 光と色の基礎知識 No.8
  • 光と色の基礎知識 No.7
  • 光と色の基礎知識 No.7
  • 光と色の基礎知識 No.7
  • 光と色の基礎知識 No.6
  • 光と色の基礎知識 No.6
  • 光と色の基礎知識 No.5