1.光学概論

人間とは、地球上で生活を営む生命体で、社会的なありかた、関係性、人格を中心にとらえた「ひと」のことである。また、その存在のありかた全体を指すこともある。

地球=太陽系に属する惑星で、様々な物理法則から逃れられない。

生命=生物が生物として自己を維持、増殖、外界と隔離する活動の総称で固有の特性を持つ。

太陽=銀河系(天の川銀河)の恒星の1つである。太陽系の物理的中心であり、太陽系の全質量の99%以上を太陽が占める。典型的な主系列星で、スペクトル型はG2V(黄色)である。推測年齢は約46億年で、主系列星として存在する期間の半分を経過しているものと考えられている。

太陽の光(可視光線)には、無数の色が含まれている。

太陽光=白色光(色が見ない光)で、分光するとスペクトルが得られる(分光スペクトル)可視光線=電磁波の一部で、380nm780nm(JIS)の波長範囲を持つ

Fig1_0_1

全ての分光スペクトルを束ねて逆に辿れば、元の白色光に戻る。

色の違いは、波長によって決定される。

Fig1_0_2

#1 スペクトル

スペクトル(spectrumは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。

様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。

Fig1_0_3

・分光スペクトル

分光学では、電磁波(光)をプリズムや回折格子といった分光器を通すことにより得られる、電磁波の波長ごとの強度の分布を分光スペクトルという。分光スペクトルには、対象物と光との関係によるスペクトルの種類とスペクトルの波形の特長による種類とがある。

・対象物と光との関係によるスペクトルの種類

-光源スペクトル

対象物が発する光のスペクトルをいう。

-反射スペクトル

標準の光源に対し、対象物で反射する光のスペクトルをいう。

-透過スペクトル

標準の光源に対し、対象物を透過する光のスペクトルをいう。

-吸収スペクトル

標準の光源に対し、対象物が吸収する光のスペクトルを吸収スペクトルという。一般的に吸収しやすい光のエネルギー(波長)は、物質によって異なる。直接は計測できず、減算で計算する。

・スペクトルの波形の特長による種類

-連続スペクトル

熱放射による光はあらゆる波長の光を含んでいる。このような光はプリズムで分光すると連続的な虹色の模様になる。そこでこのような光のスペクトルを連続スペクトルという。

-輝線スペクトル

電離あるいは励起された原子から放射される光は原子内の電子のエネルギー準位が量子化されているため、ある特定の波長だけに限られている。このような光はプリズムで分光すると離散的ないくつかの光の線となる。この光の線を輝線といい、輝線からなるスペクトルを輝線スペクトルという。

-吸収線スペクトル

連続スペクトルを放つ光源と観測者との間に原子が存在すると、その原子がある特定の波長の光を吸収して励起されるため、その波長での強度が減少したスペクトルとなる。このような光はプリズムで分光すると連続的な虹色の模様の中にいくつかの暗い線が見られる模様となる。この暗い線を吸収線または暗線という。吸収線を持つスペクトルが吸収線スペクトルである。

光は粒子と波動の二重性を持っていることがヤングの実験によって実証されている。

粒子と波動の二重性(Waveparticle dualityとは、量子論・量子力学における「量子」が、古典的な見方からすると、粒子的な性質と波動的な性質の両方を持つという性質のことである。

光のような物理現象が示す、このような性質への着目は、クリスティアーン・ホイヘンスとアイザック・ニュートンにより光の「本質」についての対立した理論(光の粒子説と光の波動説)が提出された1600年代に遡る。その後19世紀後半以降、アルベルト・アインシュタインやルイ・ド・ブロイらをはじめとする多くの研究によって、光や電子をはじめ、そういった現象を見せる全てのものは、古典的粒子のような性質も古典的波動のような性質も持つ、という「二重性」のある「量子」であると結論付けられた。この現象は、素粒子だけではなく、原子や分子といった複合粒子でも見られる。実際にはマクロサイズの粒子も波動性を持つが、干渉のような波動性に基づく現象を観測するのは、相当する波長の短さのために困難である。

Fig1_0_4

光が波動でもあることから、色も波動で表現できることが一般的に知られている。これは、プリズムによって得られた分光スペクトルによって色分けでき、いわゆる虹の七色を形成している。これを「色の三属性」に当てはめてみると、光のエネルギーの大小で明度を決め、電磁波の高低で彩度を決め、そして周波数の違いで色相を決めている。

 

#2 電磁波

 電磁波(electromagnetic waveは、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射(英: electromagnetic radiation)とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。

電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。

微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。電磁波と波長の関係は下図に示した通りである。

なお、可視光線は、JISによって定められており、380nm780nmの範囲となっている。

Fig1_0_5
Fig1_0_6


λ は波長、E は電場の振幅、M は磁場の振幅を表す。横軸は距離であり電磁波の進行方向を指す。縦軸は電場と磁場であり、磁場の軸は奥行き方向に倒して描かれている。図に示されるように、電磁波は横波として伝播する。(上図の説明)

 電場と磁場は真空中にも存在でき、波を伝える媒体となる物質(媒質)が何も存在しない真空中でも電磁波は伝わる。電磁波の電場と磁場の振動方向は互いに垂直に交わり、電磁波の進行方向もまた電磁場の振動方向に直交する。つまり電磁波は横波である。基本的に電磁波は空間中を直進するが、物質が存在する空間では、吸収、屈折、散乱、回折、干渉、反射などの現象が起こる。また、重力場などの空間の歪みによって進行方向が曲がる(歪んだ空間に沿って直進する)ことが観測されている。

Fig1_0_7媒質中を伝播する電磁波の速度は、真空中の光速度を物質の屈折率で割った速度になる。例えば、屈折率が 2.417 のダイヤモンドの中を伝播する可視光の速度は、真空中の光速度の約 41% に低下する。ところで、電磁波が異なる屈折率の物質が接している境界を伝播するとき、その伝播速度が変化することによって屈折が起こる。これを利用したものにレンズがあり、メガネやカメラ、天体望遠鏡などに使われ、電子回路の複写などにも利用されている。 なお屈折率は電磁波の波長によって異なるため、屈折する角度も波長に依存する。これを分散と呼ぶ。虹が七色に見えるのは、太陽光が霧などの微小な水滴を通るとき、分散があるために、波長が長い赤色光と波長の短い紫色光が異なる角度に屈折するためである。

電磁波は、特にその波長によって物体との相互作用が異なる。そこで、波長帯ごとに電磁波は違う呼び方をされることがある。すなわち、波長の長い方から、電波、赤外線、可視光線、紫外線、X線(あるいはガンマ線)などと呼ばれる。我々の目で見えるのは可視光線のみだが、その範囲(波長 0.4 μm 0.7 μm、正確には380nm780nm)は電磁波の中でも極めて狭い。可視光線の中では単色光の場合、赤、黄、緑、青、紫の順に波長が短くなる。そのため、ある基準よりも波長の長い電磁波を「赤い」、波長の短い電磁波を「青い」と表現することがある。 前述の通り、真空中では電磁波の速さは一定であるため、波長の長い電磁波は振動数が小さく、波長の短い電磁波は振動数が大きい。

電磁波には重ね合わせの原理が成り立ち、電磁波は線型性を持つことが知られる。線型性によって、電磁波を平面波、すなわち特定の振動方向と進行方向を持つ波の重ね合わせとして表現することができる。平面波はまた、同じ方向へ進む正弦波を用いて分解することができる。各々の正弦波は、波長、振幅、伝播方向、偏光、位相によって特徴付けられる。

ある電磁波を多くの正弦波の重ね合わせとみなしたとき、波長ごと、あるいは振動数ごとの成分の大きさの分布をスペクトルという。 例えば、理想的な白色光はすべての波長成分が一様に含まれている。逆に単色光は1つの波長成分だけを持つ。